Enhanced photon absorption and carrier generation in nanowire solar cells.

نویسندگان

  • Wei Wang
  • Shaomin Wu
  • Randy J Knize
  • Kitt Reinhardt
  • Yalin Lu
  • Shaochen Chen
چکیده

Overall performance of a thin film solar cell is determined by the efficiency of converting photons to electrons through light absorption, carrier generation, and carrier collection. Recently, photon management has emerged as a powerful tool to further boost this conversion efficiency. Here we propose a novel nanograting solar cell design that achieves enhanced broadband light absorption and carrier generation in conjunction with the reduced use of active and non-earth-abundant materials. A test using this design for the short circuit current density in CuInxGa(1-x)Se2 (CIGS) thin film solar cells shows up to 250% enhancement when compared to the bare thin film cells. In addition, placing metal strips on top of the nanograting to act as the top electrode reduces the use of non-earth-abundant materials that is normally used as the transparent conducting materials. This novel solar cell design has the potential to become a new solar cell platform technology for various thin film solar cell systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy

Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...

متن کامل

Amorphous Silicon Core-shell Nanowire Solar Cells

Nanostructures such as nanoparticles and nanowires have been demonstrated as powerful tools to improve light absorption[1-4], to enable low temperature process[5], to demonstrate multi-exciton generation[6], and to decouple the absorption depth and carrier diffusion length[7, 8]. Here we demonstrated the first amorphous silicon coreshell nanowire solar cells, which can be fabricated through a l...

متن کامل

Design of nanowire optical cavities as efficient photon absorbers.

Recent investigations of semiconductor nanowires have provided strong evidence for enhanced light absorption, which has been attributed to nanowire structures functioning as optical cavities. Precise synthetic control of nanowire parameters including chemical composition and morphology has also led to dramatic modulation of absorption properties. Here we report finite-difference time-domain (FD...

متن کامل

Improving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires

In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...

متن کامل

Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells

Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH3NH3PbI3). Results show that the CSE rapidly decreases along the rad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 2012